

BioTransform.at

Using domestic land and biomass resources to facilitate a transformation towards a low-carbon society in Austria

Transformationsszenarien zu einer Bioökonomie in Österreich

Inhaltsverzeichnis

1	Das Projekt "BioTransform.at"	Seite 3
2	Modellierungsansatz	Seite 4
3	Transformationsszenarien zu einer Bioökonomie in Österreich	Seite 8
4	Weitere Informationen	Seite 1
5	Kontakt	Seite 1

Das Projekt "BioTransform.at"

Koordination

Austrian Energy Agency

Projektpartner

- Energy Economics Group, Technische Universität Wien
- Institut für Soziale Ökologie, Alpen-Adria-Universität Klagenfurt/Graz/Wien
- Institut f
 ür Waldbau, Universit
 ät f
 ür Bodenkultur Wien
- Lehr- und Forschungszentrum für Landwirtschaft Raumberg-Gumpenstein
- energieautark consulting gmbh
- Laufzeit: Mai 2014 bis Mai 2016
 - Gefördert aus Mitteln des Klima- und Energiefonds
 - Durchgeführt im Rahmen des "Austrian Climate Research Programmes" (ACRP 6th Call 2013)

Modellierungsansatz - Grundlegendes

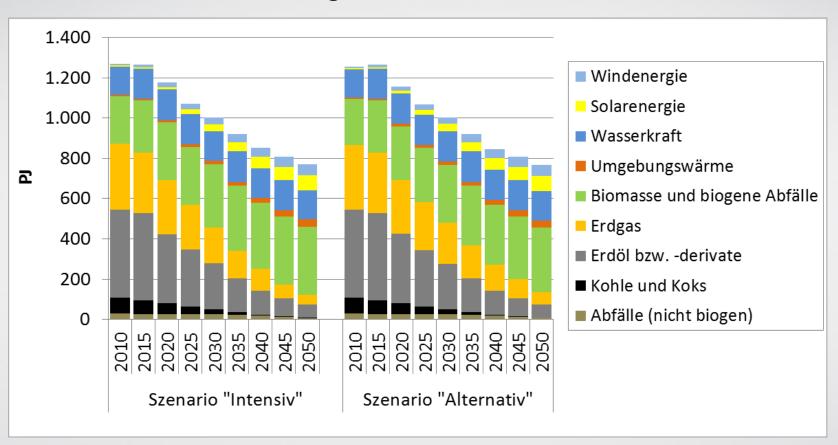
- Ziel der Modellierung waren Transformationspfade in Richtung einer "Low-Carbon Bioeconomy" für Österreich
 - Minus 80 % Treibhausgasemissionen bis 2050 (ggü. Kyoto-Baseline)
 - Weitgehende Substitution fossiler Rohstoffe im Bereich der stoffl. Nutzung durch Biomasse
 - Keine Ausweitung der (Netto-)Biomasseimporte
- Die beiden hier dargestellten Szenarien werden diesen Kriterien gerecht.
- Es handelt sich um Szenarien (d.h. um in sich schlüssige Entwicklungspfade),
 nicht etwa um Prognosen oder Umsetzungsstrategien.
- Beiden Szenarien gehen von erheblichen Steigerungen der Energieeffizienz sowie einem starken Ausbau erneuerbarer Energieerzeugung aus.
 Ohne diese Grundannahmen wäre eine Transformation im Sinne der oben genannten Kriterien nicht darstellbar.

Modellierungsansatz – Methodik

- Dynamische Optimierung in der Entwicklungsumgebung "TIMES"
 - Zielfunktion: Minimierung der (inländischen) THG-Emissionen
 - Ökonomische Aspekte werden nicht betrachtet
 - Zeitliche Auflösung: 5-Jahres-Schritte
 (bei Strom- und Fernwärme zusätzlich tageszeitliche (2) bzw. saisonale (3) Zeitschritte)
- Bilanzierung von THG-Emissionen basierend auf "IPCC-Regeln";
 Abweichungen hinsichtlich:
 - Änderung des Kohlenstoffbestandes im Wald: Änderung ggü. Basisjahr 2010 (keine Referenzentwicklung bis 2050 verfügbar)
 - THG-Bilanz von Biomasse gemäß der Kohlenstoffflüsse im Modell
 (d.h. keine Anwendung des "HWP-Ansatzes" gemäß IPCC Guidelines)
 - Modellierung von Abfallaufkommen auf Basis individueller Lebensdauern der Produktgruppen

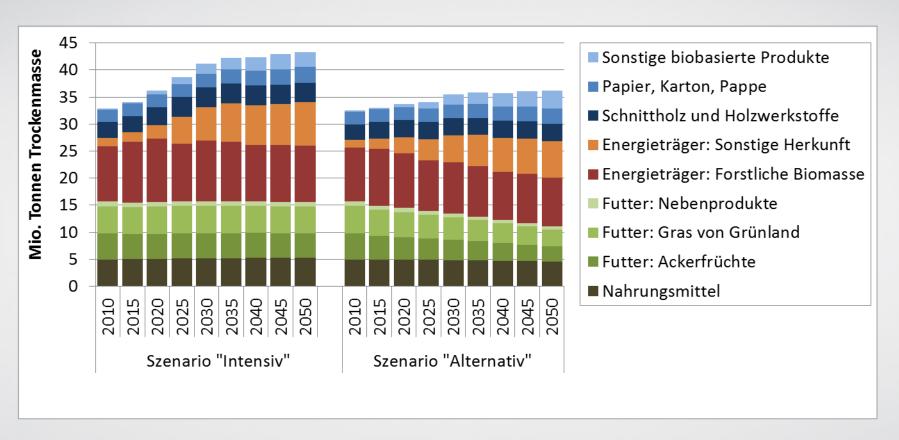
Modellierungsansatz – Generelle Annahmen

- Geographische Systemgrenze: Österreich
 - Biomasse-Außenhandelsströme bis 2050 konstant angenommen
- Generelle Annahmen mit Relevanz für Energieverbrauch:
 - Erhebliche Verbesserung der Energieeffizienz (Raumwärme, Verkehr, Industrie)
 - Verstärktes Umweltbewusstsein, Änderungen von Lebensstilen
 - Starker Ausbau von erneuerbarer Energie (insbes. PV und Wind)
 (Grundlage: "WAM-plus-Szenario" Stand 2015)
- Nahrungsmittelversorgung hat oberste Priorität

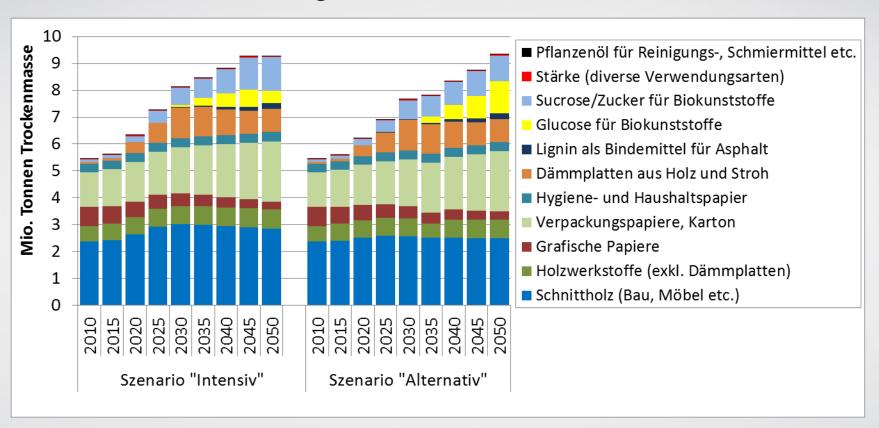


Modellierungsansatz – Szenariospezifische Annahmen

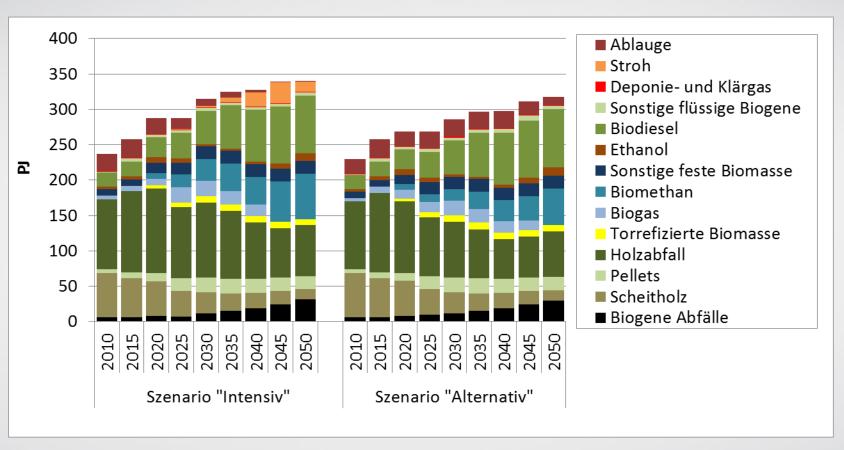
	Szenario "Intensiv"	Szenario "Alternativ"
Ernährungsgewohnheiten	Trendfortsetzung (leichter Trend zu weniger Fleisch und gesünderer Ernährung)	Starker Trend zu weniger Fleisch und gesünderer Ernährung
Landnutzungsänderungen (zwischen Wald, Ackerflächen, Grünland und Siedlungsflächen)	Trendfortsetzung (jährliche Änderungen gleichbleibend)	Abnahme des Verlustes landw. Flächen (im Zeitraum 2021 bis 2030 um 50 % reduziert; ab 2030 keine Landnutzungsänderungen mehr)
Waldbewirtschaftung	Verstärkte Entnahmen aus privatem Kleinwald	Gleichbleibende Entnahmen aus privatem Kleinwald, längere Umtriebszeiten
Landwirtschaftliche Erträge	Langfristig deutlicher Anstieg	Konstant auf derzeitigem Niveau
Nahrungsmittelverluste	Konstant auf derzeitigem Niveau	Langfristig (2050) auf 50% reduziert
Energetische Nutzung landw. Reststoffe (Stroh etc.)	Ja	Nein



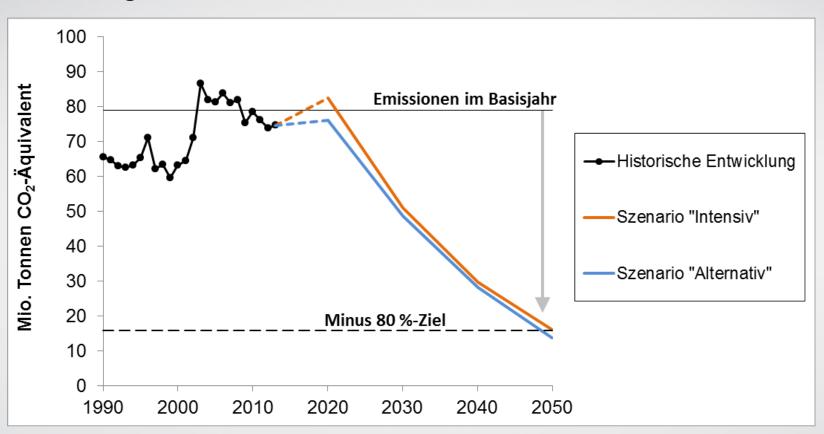
Bruttoinlandsverbrauch Energie in den Szenarien "Intensiv" und "Alternativ"



Gesamter Biomasseeinsatz in den Szenarien "Intensiv" und "Alternativ"



Stoffliche Biomassenutzung in den Szenarien "Intensiv" und "Alternativ"



Struktur der Biomassenutzung in den Szenarien "Intensiv" und "Alternativ"

Treibhausgasemissionen in den Szenarien "Intensiv" und "Alternativ"

Weitere Informationen

- BioTransform.at-Projekthomepage, Download der Projektberichte: http://tinyurl.com/biotransformat
- Teilbericht zu den Transformationsszenarien (in engl. Sprache):
 https://www.energyagency.at/fileadmin/dam/pdf/projekte/klimapolitik/Del.5.2 T
 ransformation scenarios towards a low-carbon bi.pdf
- Website des Klima- und Energiefonds Projektberichte Forschung: https://www.klimafonds.gv.at/foerderungen/projektberichte/forschung/
- Website von klimaaktiv nawaro markt: http://www.klimaaktiv.at/erneuerbare/nawaro_markt.html
- WAM-plus-Szenario 2015 (Website des Umweltbundesamtes):
 http://www.umweltbundesamt.at/aktuell/publikationen/publikationssuche/publikationsdetail/?publid=2124

Kontakt

DI Dr. Gerald Kalt

Wissenschaftlicher Mitarbeiter

ÖSTERREICHISCHE ENERGIEAGENTUR
AUSTRIAN ENERGY AGENCY

Mariahilfer Straße 136 | 1150 Vienna | Austria gerald.kalt@energyagency.at | www.energyagency.at